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Abstract—Contrastive learning has shown remarkable success
in the domain of skeleton-based action recognition. However, the
design of data transformations, which is crucial for effective con-
trastive learning, remains a challenging aspect in the context of
skeleton-based action recognition. The difficulty lies in creating
data transformations that capture rich motion patterns while
ensuring that the transformed data retains the same semantic
information. To tackle this challenge, we introduce an innova-
tive framework called ActCLR+ (Actionlet-Dependent Contrastive
Learning), which explicitly distinguishes between static and dy-
namic regions in a skeleton sequence. We begin by introducing the
concept of actionlet, connecting self-supervised learning quantita-
tively with downstream tasks. Actionlets represent regions in the
skeleton where features closely align with action prototypes, high-
lighting dynamic sequences as distinct from static ones. We propose
an anchor-based method for unsupervised actionlet discovery, es-
tablishing a motion-adaptive data transformation approach based
on this discovery. This motion-adaptive data transformation strat-
egy tailors data transformations for actionlet and non-actionlet
regions, respectively, introducing more diverse motion patterns
while preserving the original motion semantics. Additionally, we
incorporate a semantic-aware masked motion modeling technique
to enhance the learning of actionlet representations. Our compre-
hensive experiments on well-established benchmark datasets such
as NTU RGB+D and PKUMMD validate the effectiveness of our
proposed method.

Index Terms—Skeleton-based action recognition, self-

supervised learning, contrastive representation learning.

I. INTRODUCTION

KELETONS depict human joints through 3D coordinate
S locations and offer a lightweight and compact means of
representing human motion in contrast to RGB videos and depth
data. Due to ease of use and improved discriminative capabilities
for analysis, skeletons have found extensive application in action
recognition tasks [1], [2], [3], [4], [5], [6].

Supervised skeleton-based action recognition methods [7],
[8], [9] have demonstrated remarkable performance, but heavily
rely on vast labeled training data, of which collection can be
costly work. To mitigate dependence on complete supervision,
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self-supervised learning has been studied for skeleton-based
action recognition [6], [10], [11], [12].

When considering pre-training paradigms, most methods fall
into two categories: reconstruction-based [6], [13], [14] and
contrastive learning-based. Reconstruction-based approaches
model the spatial-temporal correlations by forecasting masked
skeleton data. In the domain of long-term global motion dy-
namics, Zheng et al. [ 10] pioneered the concept of reconstructing
masked skeletons. On the other hand, contrastive learning-based
methods have recently exhibited remarkable potential, which
utilize skeleton transformations to generate positive pairs, and
to seek consistency in the embedding space. Rao et al. [15] intro-
duced shearing and cropping as data augmentation techniques.
Guo et al. [16] extended these efforts by suggesting additional
augmentations, such as rotation, masking, and flipping, to en-
hance the consistency of contrastive learning.

Although previous works [17], [18], [19], [20], [21] have
demonstrated the importance of data transformations, they less
comprehensively study the impact of data transformations on
feature space. Previous works have typically approached the
analysis from the perspectives of mutual information, loss func-
tion, or graph optimization, respectively. However, there are
relatively few theoretical studies addressing data transformation
in contrastive learning. And data transformation is crucial for the
performance of contrastive learning. Therefore, in this paper, we
show that contrastive learning loss is equivalent to performing
spectral clustering in data augmentation graphs. We focus on
the role of data transformation in contrastive learning. We show
that the strength of the data transformation determines the num-
ber of clusters in graph clustering, while the method of data
transformation determines the purity of clustering. Our results
show that good downstream task performance is achieved by
reducing the number of clusters and improving clustering purity.
However, we also note that it is difficult to optimize both the
quantity and quality of clustering. When the data transformation
is strong, the number of clusters is small, but also it is more
likely that there are different classes of data clustered into the
same clusters. This leads to a decrease in the purity of the
clustering.

In response to these challenges, we introduce a novel
enhanced actionlet-dependent contrasting and reconstructing
learning method (ActCLR+), wherein we treat motion and static
regions distinctly. We ensure that the clusters have a good purity
by utilizing data transformation that can preserve the semantics,
so that data of the same category can be aggregated into the same
clusters.
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First, we introduce the concept, actionlet, which is defined
in the work [22] as the highly representative skeleton struc-
ture, to the self-supervised learning context. These actionlets
contain strong discriminative action patterns for distinguishing
the corresponding action from others, and hence can guide the
contrastive learning process. Inspired by this, we propose an
unsupervised method to mine the actionlets by contrasting action
prototypes as positive anchors and mean motions as negative
anchors. Specifically, action prototypes represent cluster centers
obtained through feature clustering, while the mean motion is
calculated based on the average of all sequences in the dataset.
Action prototypes can thus be considered a series of actions,
while mean motion acts as a stationary anchor devoid of motion.
Subsequently, we compare action sequences to the nearest action
prototypes and mean motions to identify the region with the
most representative unique patterns, which is treated as the
actionlets.

Based on the concept of actionlets, we further develop a
motion-adaptive similarity distillation module (MASD) to by
reduce the number of clusters and improve clustering purity. This
module involves applying the proposed semantically preserving
data transformations to the actionlet region, while utilizing
stronger data transformations only for non-actionlet regions.
This approach preserves action movement within actionlet while
incorporating richer motion patterns, resulting in more compact
and informative learned features. This leads to a decrease in
the number of clusters in spectral clustering while uphold-
ing a high cluster purity. We then apply an intra-sequence
and inter-sequence similarity distillation loss to constrain the
feature consistency of the transformed data with the original
data.

Additionally, we employ a semantic-aware masked motion
modeling method (SAM?). This method focuses on reconstruct-
ing data in the actionlets region, emphasizing features related to
motion information and enhancing performance in downstream
tasks.

We conduct extensive experiments on NTU RGB+D [23],
[24] and PKUMMD [25] datasets. Our model attains outstand-
ing results through self-supervised learning in comparison to
contemporary sota methods.

Our contributions are summarized as follows:

® We prove that contrastive learning is equivalent to spectral
clustering on the data augmentation graph. The data trans-
formation determines the number and purity of clusters.
Fewer number of clusters and better purity of clusters
lead to good downstream task performance. We propose a
semantics-preserving data transformation to obtain optimal
clustering embeddings, with alower number of clusters and
higher purity.

e We design an actionlet-based motion adaptive data trans-
form to preserve motion information. After mining the
motion regions as actionlets through an unsupervised ap-
proach, we enhance the data transformation of the non-
actionlet regions to reduce the number of clusters and
improve clustering purity. Meanwhile, we employ an
intra-data similarity distillation to enhance the consistency
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along with an inter-data contrasting to provide richer mo-
tion patterns.

e Through the analysis we find that overfitting of contrastive
learning is caused by that the learned features contain only
mutual information between positive samples. Therefore,
we propose semantic-aware masked motion modelling to
increase task-relevant information. By reconstructing the
data in the actionlets region, the features are more con-
cerned with motion information and have better perfor-
mance in downstream tasks.

This paper is an extension of our earlier publication [26].
Compared to our previous work, we make significant additional
contributions in both theory, technological, and experimental
parts. (1) This study provides novel theoretical derivations on
contrastive learning, demonstrating its equivalence to spectral
clustering in data augmentation graphs. This newly theoretical
conclusion leads to the comprehensive upgrade of our actionlet-
based method. (2) Beyond using the average motion to select ac-
tionlets in [26], action prototypes obtained based on cluster char-
acteristics are used to select the motion regions. Additionally,
we are further inspired to augment motion-aware data transfor-
mation with newly proposed strong data transformations based
on adversarial noise and skeleton masking. (3) Furthermore, at
the loss end, to model the inter-data relationship and capture
fine-grained motion details of skeletons, we propose two loss
terms built on mix-based inter-sequence similarity distillation
and mask reconstruction. (4) The experiments have been sig-
nificantly enriched, providing more comprehensive comparison
results from diverse aspects. Impressively, we achieve a 7.5%
increase in xview and a 5.7% increase on xsub for the NTU 60
dataset with only 1% training samples.

The remainder of this paper is organized as follows. In Sec-
tion II, we provide an overview of existing research in relevant
fields. Then, in Sections III and IV, we delve into the motivation
behind our approach and its intricate design details, respectively.
Next, in Section V, we present experimental results to showcase
the efficacy of our methods. Finally, in Section VI, we con-
clude the paper with a summary and outline potential future
directions.

II. RELATED WORK
A. Skeleton-Based Action Recognition

Sequences of skeletal data provide a detailed representation
of the movements of human joints. As a result, skeletons are
appropriate modality for recognizing actions. This type of data
is obtained by applying pose estimation algorithms to RGB
videos and depth maps [27]. Owing to its scale invariance, and
resilience to variations in clothing texture and background, the
field of skeleton-based human action recognition has garnered
considerable interest within the research community [2], [3].

Initial investigations concentrated on deriving manually
crafted spatial and temporal domain characteristics of skeletal
sequences to recognize human movements [28], [29]. In later
work, Tao et al. [28], [30] focused on capturing both positional
data and higher-order temporal variations within the human
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skeleton, while Wang et al. [31] constructed a graphical model
that tracked the trajectory of human joints to represent the joint
information within the video sequence.

Given the potent expressiveness of graph structures, there
has been a burgeoning interest in the recent research in de-
ploying graph-based learning models [31]. Graph Neural Net-
works (GNNs) are connectivity frameworks that adeptly capture
the dependencies within a graph, allowing for the transfer of
information between nodes. Si et al. [32] were pioneers in
introducing a network that deduces spatial domain inferences
and proficiently captures the high-level spatial structure and
temporal dynamics present in skeletal data. The introduction
of high-level joint semantics for human movement recognition
was explored by Zhang et al. [3]. Moreover, the application of
attention mechanisms to extract discriminative information and
global dependencies was investigated by Siet al. [7]. To alleviate
the computational demands of GCN, Song et al. [33] devised
a multi-stream GCN model that early integrates various input
branches such as joint position, motion velocity, and bone fea-
tures, employing separable convolutional layers to significantly
cut down on trainable parameters. Shi et al. [34] introduced
the 3D-Shift GCN, a novel architecture leveraging a spatiotem-
poral volume framework to model cross-joint dependencies
and interactions for global feature extraction. Zhou et al. [35]
proposed a novel topological encoding approach that captures
the skeletal structure by encoding the relative distances between
joint pairs within the skeletal graph for effectively preserving
the spatial relationships and hierarchical dependencies inherent
in the skeletons.

However, the receptive fields of Graph Convolutional Net-
works (GCNs) are inherently constrained by joint connectiv-
ity, limiting their ability to capture global dependencies. To
overcome this limitation, recent advancements [36], [37] have
introduced transformer-based methods. Jeonghyeok et al. [37]
proposed Skeletal-Temporal Transformer (SkateFormer), that
partitions joints and frames based on distinct skeletal-temporal
relationships and applies skeletal-temporal self-attention within
each partition, enabling efficient and focused modeling of
skeletal-temporal dynamics.

B. Self-Supervised Representation Learning

Contrastive learning offers a self-supervised approach to align
pairs of positive sample inputs while pushing pairs of negative
sample inputs further apart. Typically, these methods aim to min-
imize the distance of representations between positive samples
and maximize that between negative samples. In the realm of
images, positive samples are often created through various aug-
mentation such as rotation, cropping, and random adjustments
in grayscale and color [38], [39], [40], [41], [42]. Translating
these techniques to videos poses challenges, particularly in con-
sidering the temporal domain. While some methods straightfor-
wardly extend the same augmentation applied to images to each
frame in the video [43], [44], [45], others integrate additional
frame alignments based on temporal considerations [46], [47].
Additionally, certain approaches rely on motion and optical flow
maps as positive samples [48].
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For skeleton data, it is difficult to directly introduce data
transformation methods from the image or video domains be-
cause of the sparsity in the spatial domain and the redundant
low-rank nature of skeleton data in the temporal domain. Many
methods have tried to design corresponding data transformations
for skeletons [11], [15], [16], [26], [49], [50]. Lin et al. [11]
pioneered the integration of contrastive learning into skeleton
action recognition, introducing data transformations based on
masking and temporal-domain shuffling. iMiGUE [51] special-
izes in body movement analysis through an encoder-decoder ar-
chitecture to extract discriminative features from keypoint-based
motion sequences in an unsupervised manner. Rao et al. [15]
devised more data transformations and demonstrated that strong
data transformations produce better recognition performance.
Mao et al. [49] subsequently introduced a relational distillation
loss to address the pseudo-negative sample problem in con-
trastive learning. This innovation aimed to improve the con-
sistency and quality of learned representations. Lin et al. [26]
further refined the data transformation method for skeleton
data by introducing the decomposition of moving and non-
moving regions. This decomposition enabled the design of a
data transformation that preserves the semantic information of
motion. Shah et al. [52] explored the challenge of hallucinating
new positives within the latent space. Building on this, Lin et
al. [53] introduced equivariant contrastive learning, an exten-
sion of invariant contrastive learning, designed to retain critical
transformation information while enhancing representational
robustness.

Recent studies have integrated generative pre-training into
unsupervised representation learning, yielding promising ad-
vancements. Mao et al. [54] proposed predicting the temporal
motion of masked human joints within spatio-temporal skele-
ton sequences, effectively leveraging generative models for
temporal understanding. Lin et al. [55] provided a theoretical
demonstration of the equivalence between generative models
and maximum entropy coding. They introduced an idempotency
constraint that enforces stronger consistency regularization in
the feature space. Abdelfattah et al. [56] predicted the latent
representations of missing joints within the same sequence to
learn the high-level context and depth information.

III. A GRAPH LEARNING PERSPECTIVE

A. Spectral Clustering on Augmentation Graph

In this section, we show that contrastive learning loss is
equivalent to performing spectral clustering in data augmenta-
tion graphs. From an energy modelling perspective, contrastive
learning loss functions constitute an estimate of the distribution.

p(x) =Y p(x,x") = p(x|x")p(x")

= 3 A(xlx)p(xh)

= % Z %exp (f(X)Tf(X+)) , (D
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where Z is the normalization factor. where x is the transformed
views of input skeleton data x with data transformation 7. f(-)
projects x into the hypersphere S?~!, where d is the dimension
size. We take InfoNCE (Lgmerr) [57] as an example, which is
commonly used in contrastive learning.

Laner = = 3 logplx) = — 3 log - exp (£()" ("))

= =3 [re"rxh)]

x,xt

+° [10g Y- [exo (1071 <X‘>)H
- _ Z wx,x/f(X)Tf(X/)

x,x'eX
+ Z wy log Z Wy’ €XP (f(X)Tf(X/)>
xeX x'eX

N

=-Tr(F'AF)+1wlog (exp(w‘

= [falign + ‘Cunifa (2)

(x,%x") ~ wx x. x and x’ are sampled from data distribution X
wx x' 18 the joint probability of x and x’. Here, we propose the
concept of a transformation flow, which is a series of transfor-
mations connecting two samples:

XX ==X, X, 3)

W, x! = Exy,xp)exn [AXi[x)A(xa|x1) - - - A(X'x,)],
4)

where A(-|x) is distribution of augmented data given x. And
Wx = Y cx Wx,x' s the marginal distribution of x. w € RN*N
is adiagonal matrix with wy x = wx. Z is the feature matrix with
f(x)T asthei—throw. F = \/wZ. A € RV*V is the adjacency
matrix defined by the data transformations. The weights A o =

wx,x/ . . L
Nt L is the Laplacian matrix:

L=1I-A.
Tr(FTLF) = —Tr(FT AF) + const, 5

const means a constant. This illustrates that contrastive learning
is equivalent to optimizing spectral clustering with regulariza-
tion constraints. Thus the dynamics of contrastive learning can
be modelled as follows.

B. Gradient Dynamics

We derive Lgin; to obtain the update process for the features.
For alignment, We take the derivative of Lyjgn as:

Falign = _nVFﬂalign = 77AF7 (6)
where 7) is the learning rate. We observe that the alignment loss
in the context of contrastive learning plays a pivotal role in the
feature update process. Specifically, it updates the feature of x
by considering a weighted summation that aggregates features
from the neighborhood Nj.

FFTw_%)leT) .
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For uniformity, the derivative of L is as follows:
Funit =~V Luit = —(D'~'w? A'w?)F, @)

where A’ = exp(w 2 FFTw 2) and D’ = deg(A'w).
We present our conclusive update rule for contrastive learning
combining the alignment update and uniformity update:

F = Faign + Funit = 7(A = D' 'w2 A’w?)F. ®)

Hence, the training procedure aims to instruct the network
in aligning the graph of feature similarities A’ with the data-
augmentation graph created from data transformations A.

Equilibrium State: After reaching equilibrium, the differ-
ence between the two graphs converges to 0. That is A —
D' 'w2A'w? = 0. In this way, we employ the similarity be-
tween features to estimate the adjacency matrix defined by the
data transformation:

ex x) f(x'
S _ pUCIED) )
X e exp (1) (X))

This converges to fixed points in the feature space:

Wx x!

AF =D 'wrAwiF". (10)

Thus, at equilibrium, the data on the transformation flow
converges exponentially to the centre point p:

p= %Zf(xi)-
=1

C. Exploring Augmentation Complexity

(1)

From this we note that contrastive learning is essentially the
alignment of transformation space and metric space. In the trans-
formation space, we use various data transformations to connect
data samples of the same category. And in the metric space,
we prove that contrastive learning uses the distance between
features to estimate the probability of the transformation flow
between two samples. We use the number of clusters to represent
data transformation strength. Longer transform flows lead to
fewer number of clusters. Besides, we use the category diameter
as a quantitative measure of cluster purity and show that longer
transformation flows lead to smaller diameters.

Spectral Clustering Number: For the Laplace matrix, the
geometric multiplicity of zero eigenvalue (or the number of
eigenvalues less than a threshold for approximation) represents
the tightly connected parts of the graph. Therefore, we estimate
the number of clusters to represent the data transformation
strength using the geometric multiplicity of zero eigenvalue.

Specifically, we analyze why the geometric multiplicity of
the zero eigenvalue represent the tightly connected parts of the
graphs. Our analysis is formalized using the Cheeger Inequal-
ity from graph theory. We first give the definition of Cheeger
Constant:

Definition 1 (Cheeger Constant): Consider a subset of nodes,
denoted as S, within graph G = (V, E). The set 9S captures the
edges originating from nodes in S and terminating in nodes out-
side Sas 0S = {(u,v) e E:u e S,v € V\ S}. In this con-
text, the Cheeger Constant, represented as hg, characterizes the
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connectivity of graph G and is defined as hg = ming ®g(S),
where

S
min(vol(S), vol(V) — vol(S))’

®g(S) = (12)
which is the conductance, with vol(S) denoting the sum of
degrees of nodes within set S.

In a more intuitive sense, the Cheeger Constant is small when
there is a bottleneck within graph, meaning that there are two
sets of nodes with only a limited number of edges connecting
them. Conversely, we can deduce that hg is greater than zero if
and only if graph is a connected graph. This notion aligns with
the idea that the Cheeger Constant quantifies the connectivity
and bottleneck properties of the graph.

We extend Cheeger Constant to higher orders to describe the
results of k-clustering:

ha(k) = 13)

min
partition Cq,...,Cy

max &5 (C;),

where C; is a subgraph of G. The metric hg (k) becomes
minimal specifically when the graph G can be divided into &
clusters, each characterized by low conductance. The correlation
between the k-way expansion of graph G and the eigenvalues of
its Laplacian matrix is elucidated by the higher-order Cheeger
inequality.

Theorem 1: Let L be the graph Laplacian matrix of G, and
let v; < vy <--- < v, be the eigenvalues of the normalised
Laplacian matrix. Therefore, we obtain:

%’“ < ha(k) < O(K3)/or.

This lemma reveals that establishing an upper bound on
hg(k) and a lower bound on vy are adequate conditions to
ensure the possibility of partitioning G into k clusters with low
conductance while preventing its partition into k + 1 clusters.
Such conditions are frequently employed in the analysis of graph
clustering.

» Number of Clusters: Therefore, to quantitatively assess the
strength of the data transformation, we use the number of zero
eigenvalues of the Laplace matrix L to characterise the strength
of the data transformation. This can be written:

K = ;ﬂ[hg(k) < g] ~ ;ﬂ[vi <4,

(14)

s)

where € > 0 is a threshold. As shown in Fig. 1, the maximum
number of singular values below the threshold is used as the
data transformation complexity x. v,, < e and v,,4; > €. Strong
data transformation leads to fewer number of clusters, so the
parameter ~ is small. On the contrary, a large ~ indicates that
there are more clusters and the data transformation is weak.

* Relation to Downstream Tasks: To quantify the validity of
our proposed metrics with the accuracy of downstream tasks,
we use three data transformations to model different intensities
of data transformation on the NTU RGB+D Dataset 60 [23],
followed by linear evaluation with a classifier ¢(+) to obtain the
action recognition accuracy.

x=M®o (xR) + N, (16)
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Fig. 3. Curves of x with accuracy. The red line is the accuracy yae. of our
prediction using . As the data transformation is enhanced, the accuracy first
rises and then falls, representing the optimal data transformation.

where M is the mask matrix, R is the shear matrix and N is the
Gaussian noise matrix. We can control the intensity of the data
transformation by adjusting the masking ratio of the masking
matrix, the intensity of the shear matrix and the variance of the
noise matrix. Fig. 2 shows the relationship between adjusting
the variance o2 of the Gaussian noise and our metrics &, and
it can be seen that a larger variance leads to a stronger data
transformation and thus a smaller metric . The Fig. 3 shows
the relationship between the accuracy and the parameter «, and
it can be seen that the accuracy first increases with increasing x
and then decreases. More specifically, this function relationship
between accuracy and x can be quantified as:

63.64

Yace = 60.97 = 0.069% — ——, A7)

as shown by the red line in Fig. 3. There exists a maximum value
for this function that corresponds to the optimal data transfor-
mation intensity. We can prove this relation by the following
theorem [58].
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Theorem 2: If vy < vy < --- < v, are the eigenvalues of the
normalized Laplacian matrix L of A, Ay > X9 > --- > A, are
the eigenvalues of A, A; = 1 — v; and if the clustering purity is
l-—a a= P[yx # yx’] < hG(k) < % Yace = P[¢(X) = yx]-
we obtain:

n
2
1 — yace <1 E A; +
i=d+1

=q Z (1 —v;)* + cax

i=d+1

<ci(k—d)+ e

=R+ 2 e, (18)
where o~ O(%) under the current data transformation.
c1,C2, C3 are some constants.

This theorem illustrates the constraints on accuracy imposed
by the purity 1 — v and number « of clusters. A large purity and
a small number of clusters result in a low error rate. When only a
random data transformation is applied, it fails to retain the mo-
tion information. Consequently, when the data transformation
is significant, although the number of clusters may decrease,
various categories may be clustered together, leading to a decline
in purity.

Measuring Category Diameter: Further, we investigate the
effect of the intensity of data transformation in the metric space.
This section provides a quantitative analysis of cluster purity by
category diameter and intra-class distance. The maximum dis-
tance between converged features (category diameter) decreases
as the length of the transform flow increases.

Theorem 3: Let z1,...,2zx ~ N(p,0?) be samples of a
same category. We define the category diameter as:

D = sup ||z; — |, (19)
Zi,Zj
Then when the feature reaches equilibrium, we obtain:
(20)

1 n
Pi = gz:lzigw
=

z;; is in the transformation flow of z;. Then the expectation
of the diameter decreases with the growth of the transformation

flow:
2
E[D] ~ 2 [20 log(N)7
n

where NV is the number of samples.

* Relation to Linear Separability: Through the analysis of
previous work [59], we find that category diameter is directly
related to linear separability performance.

Theorem 4: Define the distance between categories p and q
as:

1)

(22)

L= inf |z — 2],
z;~N(p,02), z;~N(q,02)
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When the distance-diameter ratio is sufficiently large:
L _ k(k—1)y/md
-> 1t 23
D= 1 ; (23)

the feature space can be separated by x — 1 hyperplanes, where
d is the dimension size.

As stronger data transformations are applied, the category
diameters decrease and thus the clustering becomes tighter. This
leads to an improvement in the linear divisibility of the feature
space.

D. Towards Better Transformation Flow

To learn a robust representation space, the construction of the
transformation flow is essential. A well-designed transformation
flow allows for a more effective separation of classes in the
feature space.

Based on our analysis above, the optimal data transforma-
tion flow requires a reduction in the number of clusters while
maintaining the purity of the clusters:

. . €
T = argmin k, with a < 3 (24)
where 7 is the transformation flow. And we have found, that
clustering purity is strongly correlated with interclass distances
and intraclass diameters. This is therefore equivalent to:

L _ k(k—1)y/md
T = arg min k, with — > %7
D 4

We consider these two parts of the constraint separately. Specif-
ically, a longer transformation flow tends to reduce the number
of clusters. According to the definition of x:

(25)

n n
T =argmink = argminZﬂ[vi <€ = argmavai
i=1 i=1
= arg max Tr(L) = arg max Tr(F" LF) = arg max Lyjign,
(26)
under the condition that the features are orthogonal to each
other FF” = I. We then consider interclass distances and in-
traclass diameters to maintain clustering purity. Without any
class-supervised information introduced, the best data flow is
distance-preserving mapping, i.e., the inter-data distances are
not changed before and after the data transformation to avoid
introducing noisy data to destroy the data structure:
T
D = sup ||z; — z;|| = 2|z — p|| =4(1 —z" p),

Zi,Zj

27)
where z is the feature point furthest from its clustering center p.

. 1 T
b= bl S 5 el =200 o)
(28)
where the minimum distance is less than or equal to the average
distance. b = )" z; /N is the average motion feature. Maintain-
ing feature distance means:

a—DSO, —— =0.

dx ox 9
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The region of motion is identified in an unsupervised manner by comparing the data with static sequences and action prototypes, and locating the

actionlet region where the motion occurs via gradient backpropagation. Here shows interclass distances and intraclass diameters in feature space. The optimal
data transformation should maintain this distance metric to learn the data structure. Therefore, three different data transformation flows are shown here. The red
transformation flow causes the interclass distance to decrease because of too strong a data transformation, leading to an increase in the error rate. Whereas the
yellow transformation flow is weak, which leads to difficulty in learning rich motion patterns. Our approach uses the blue transform flow to provide more motion

information to connect more samples while maintaining the structure of the data.

TEEERR

Fig. 5. Visualization of the average motion sequence. Average motion repre-
sents the average of a sequence of motions and is used to estimate the average
distance between data in (28) and (36). The sequence exhibits no clear action
and is considered a static anchor.

£t £
i ~N

ﬁ‘\ //, \ /
t=21 t=22
Fig. 6. In unsupervised actionlet selection, the action prototypes and static
sequences are utilized as anchors to acquire the region of motion. The yellow
joints are the actionlet. Note that hand movements are mainly selected, indicating
that the actionlet is reasonable.

t=23 t=24 t=25

We need to keep the diameter within classes from increasing
and the distance between classes from decreasing. The following
section discusses specifically how to get the optimal transform
flow.

IV. ACTIONLET-GUIDED CONTRASTIVE LEARNING

Based on the above analysis, we conclude that the optimal
data transformation is to reduce the number of clusters x while
keeping the purity 1 — « large. Therefore, to maintain the purity
of the clusters while reducing the number of clusters, we design
a data transformation that preserves motion information. To
comprehensively and quantitatively capture the motion infor-
mation, we introduce the concept of actionlet, which serves as a
quantitative measure to assess the motion information extracted
by model as shown in Fig. 6.

Actionlets are essentially atomic elements of motion, care-
fully designed to represent the most granular and task-relevant
aspects of movement. By decomposing motion into these dis-
crete actionlets, we gain a finer level of understanding over

the underlying dynamics. This not only enables us to precisely
quantify the extracted motion information but also facilitates
a more meticulous analysis of how the network learns and
represents this critical semantics of skeleton data. Specifically,
we can use actionet to decompose action sequences and de-
couple them into mutually independent feature spaces at the
feature level. Based on the actionlet-decomposition, we pro-
pose an actionlet-based motion-adaptive data transformation
method to effectively preserve motion information. Through
an unsupervised approach, we identify motion regions as ac-
tionlets and enhance the data transformation in non-actionlet
regions, reducing the number of clusters and improving clus-
tering purity. Additionally, we introduce intra-data similarity
distillation to strengthen feature consistency and inter-data con-
trastive learning to uncover richer and more diverse motion
patterns.

Compared to our previous work, action prototypes derived
from clustering are leveraged to identify and select motion
regions effectively. Building on this, we introduce an enhanced
motion-aware data transformation that incorporates newly pro-
posed strong transformations, including adversarial noise and
skeleton masking, to enrich the diversity of data representations.
Furthermore, at the loss level, we design two novel loss terms to
capture fine-grained motion details and inter-data relationships.
The first term employs mix-based inter-sequence similarity dis-
tillation to model relational dependencies, while the second term
uses mask reconstruction to ensure robust feature learning and
preserve critical motion semantics.

A. Unsupervised Actionlet Selection

To fulfil the equations above, we first analyze the relationship
between global and local features.

z = GAP(gx(hey, )

ctv

1 T VvV
= ﬁ Zzphlctzn

t=1v=1

(30)
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where P is the weights of gx(-). And hl, = fi(x) is the I-th
output. For both GCN and transformer architectures, each layer
of the network can be conceptualized as comprising two key
components: feature fusion between joints and feature trans-
formation module. Additionally, residual connections are estab-
lished between these components across all layers, facilitating
information flow and gradient propagation:

hl 1

ctv

l
hctv

= Fusion(h’;}) +

ctv

l
hctv

= Trans(h.,,) + h,,, 31)

global features can be rewritten as
;1 IV L
=77 Z Z P Z (Fus10n(hcm) + Trans(hctv)>
t=1v=1 =1
T V L
PI)BPIL

t=1v=1[=1

?\H

('f'u =P (Wlhm‘v GW} + Wl (‘fz)) )

(32)
where W' and W' are the weights of the [-th feature fusion
module and [-th feature transformation module, respectively.
G, 1s the adjacency matrix of skeleton data. By understanding
the relationship between global and local features, we can begin
to extract motion regions from the local features, effectively
identifying them as actionlets.

To efficiently extract actionlets from skeleton data, we employ
a gradient-based approach. Traditional methods for mining ac-
tionlets rely heavily on action labels to delineate motion regions.
However, this approach becomes impractical in unsupervised
learning scenarios. Taking inspiration from the principles of
contrastive learning, we introduce an innovative unsupervised
spatio-temporal actionlet selection technique in Fig. 4.

Action Prototypes as Anchors: We employ action prototypes
as positive anchors and static sequences as negative anchors,
effectively extracting motion regions through the utilization of
triplet mining loss.

We define action equilibrium points P = {pi,...,pn} as
N clustering centers of the data as positive prototypes. These
prototypes, denoted as P, inherently possess the capability to
represent diverse classes. Given that features on the unit hyper-
sphere S~ 1, we perform k-Means clustering on the hypersphere
manifold with Riemannian metric.

P = SPHERE_CLUSTER(z), (33)
where SPHERE_CLUSTER(+) is the hypersphere manifold k-
Means clustering and f(-) is an encoder. The clustering center
corresponding to the feature z is p. So the similarity of features
and clustering centers can be:

sim(z,p) = p'z

1 T V L
DY

(34)

~

10825
So the derivation for each joint gives us this equation:
T V L
0 0
S PPN
Xi Vioao=

where x; is the ¢-th joint of x. Hence, the gradient of a joint on its
feature within the linear space of the action prototype identifies
it as part of the actionlet for that particular action prototype.

Gradient Activation Mapping for Actionlet Localization: To
delineate the motion region, we compute the triplet loss of two
features, wherein the static motion and the nearest clustering
center serve as the negative and positive anchors, respectively.
This approach involves contrasting the features of the static
motion with those of the nearest clustering center to facilitate the
identification of the motion region within the dataset, formalized
as:

I1riplet = [_Sim(za b) + sim(z, p) + ﬂJr )

p = arg max sim(z, p), (36)
peP

where []; = max(-,0). «y is the margin between positive and

negative pairs. b = GAP(gy,(f(d xcx wxx))) is the average

motion as a statics anchor as shown in Fig. 5.

To determine the motion region, we perform backpropagation
to compute the gradient of the triplet loss with respect to the
dense feature h;,,. This process allows us to identify the gradient
flow and assess how changes in the dense feature affect the triplet
loss, thereby guiding us in locating the motion region within the
data. The calculated gradients are then pooled over the joint and
temporal dimensions to get the neuron importance weights ’:

Ahctv = aazl-tlriild7
T Vv
1
e =7z > D [Ahe] (37)
t=1v=1

We approximate the neural network with a linear subspace
in the feature neighborhood by computing the gradient. With
the activation function, we filter the features that contribute
negatively to the triplet loss, and these are the static regions that
are similar to the average motion. « reflects the separability of
each channel; some channels are always activated or always
inactive and therefore not separable. Some channels capture
specific patterns and hence have a high degree of separability
and are thus noticed. Subsequently, we conduct a weighted
combination of the forward activation maps and the neuron
importance weights:

Gy
+

(38)

C
E achctv
c=1

The adjacency matrix of skeleton data G, is utilized for
importance smoothing. This is because the forward activation
maps show patterns of different regions extracted by the network.
Large activation values mean that a specific motion pattern
is extracted. And large neuron importance weights represent
positive contribution of this pattern to the triplet loss. Thus the
two are multiplied to indicate the regions in the sequence with
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(a) Motion-Adaptive Similarity Distillation
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(b) Semantic-Aware Masked Motion Modeling

Our algorithm comprises two key modules: (a) Motion-Adaptive Similarity Distillation (MASD) and (b) Semantic-Aware Masked Motion Modeling

(SAM?). The MASD module incorporates two streams: an online stream and an offline stream. The online stream, located at the top, is updated via gradient descent,
whereas the offline stream, positioned at the bottom, is updated using momentum. The process commences with the input data x4 in the online stream. Motion-
Adaptive Data Transformation (MATS) is then applied to x4 using actionlets derived from the offline stream, yielding the augmented data X¢ns. Subsequently, via
Similarity Distillation (SDT), the pipeline endeavors to maximize similarity between positive samples while minimizing similarity between negative samples. To
enhance the accuracy of motion information extraction, we introduce a Semantic-Aware Masked Motion Modeling approach. This involves masking out motion
regions based on actionlets within the Semantic-Aware Mask Module. A decoder is then trained to predict the masked skeleton data, enabling the generation of a
fine-grained motion representation. Through this process, our algorithm aims to capture nuanced motion patterns while leveraging semantic information to improve

the modeling of motion dynamics.

positive contribution to the separation of data point from other
clustering centers and static sequences.

To keep the semantics of the skeleton sequence unchanged,
we just need to preserve the skeleton of the actionlets region to
be identifiable. This is because

271 39)

Z.triplet - |: + ’Y:|

+

Because a change in the region of actionlets region greatly
affects Zyipler, it may change the distance between the data,
resulting in an increase in the diameter within classes or a
decrease in the distance between classes. Therefore, we maintain
the motion semantics of this region to maintain the data structure.

B. Motion-Adaptive Similarity Distillation

Building upon the actionlet regions, we introduce an actionlet-
dependent contrastive learning approach to maximize the advan-
tages offered by actionlets, as depicted in Fig. 7. In this approach,
we apply data transformations to different regions within the
Motion-Adaptive Similarity Distillation (MASD) module to
reduce the number of clusters « and improve clustering purity
1 — «. Additionally, we incorporate inter-data relationship mod-
eling through skeleton mix contrastive learning, facilitating the
exploration of interactions between different data samples.

Motion-Adaptive Transformation Strategy (MATS): The
choice of data transformation 7 is critical for in extracting
semantic information and enhancing generalization capabilities.
Designing data transformations while retaining motion-relevant
information remains a challenge. Better transformation leads to
adecrease in the number of clusters « in spectral clustering while
maintain a high cluster purity 1 — a.

To tackle the challenge of limited diversity in simple transfor-
mations and the risk of information loss in overly complex trans-
formations, we propose motion-adaptive data transformations
tailored for skeleton data, leveraging the concept of actionlets.

To address the specific characteristics of actionlet and
non-actionlet regions, we propose two distinct transforma-
tions: the actionlet transformation and the non-actionlet
transformation.

* Actionlet Transformation T,.,: Within the actionlet regions,
we perform data transformations to augment the diversity of
patterns, drawing inspiration from prior research [16]. Specifi-
cally, we employ the following spatial transformations: {Shear,
Spatial Flip, Rotate, and Axis Mask }. Additionally, two temporal
transformations, namely {Crop and Temporal Flip}, are applied
to introduce temporal variations. To introduce spatio-temporal
variations, we utilize {Gaussian Noise and Gaussian Blur} as
two additional transformations. Collectively, these transforma-
tions enrich the augmented data with diverse spatio-temporal
patterns, enhancing the learning process and enabling the model
to capture a broader range of motion dynamics and semantic
information within the actionlet regions.

* Non-Actionlet Transformation T,,,: To enhance the model’s
generalization capability, we introduce several additional data
transformations specifically targeted at the non-actionlet re-
gions. These transformations include techniques such as
dropout, rescale, and others. Besides, we implement an intra-
sequence data transformation { Adversarial Noise} and an inter-
sequence data transformation {Skeleton Mask}.

The problem of ActCLR is that, the randomly selected data
transformation 7 may be weak. Therefore, we propose adversar-
ial training as an enhancement strategy for data transformation
to improve feature representations.

Authorized licensed use limited to: Peking University. Downloaded on October 18,2025 at 09:50:16 UTC from IEEE Xplore. Restrictions apply.



LIN et al.: SELF-SUPERVISED SKELETON REPRESENTATION LEARNING VIA ACTIONLET CONTRAST AND RECONSTRUCT

To update the parameters of the data transformation with
gradients, we add Adversarial Noise N to data x:

T~ (X) = Xpoise = X + N, (40)

where the jittering matrix IN is initialized to 0. Based on previous
analyses, we obtain:

TN = arg max Lyjign-

N g N lig (41)

We update the parameters of these three matrices by ad-

versarial attack. Following the Fast Gradient Sign Method

(FGSM) [60], we hope to make data transformations attack the

triplet 10ss Zyipie. to approximate Lyjign to fool the encoder f ().

Therefore, the parameters of the three matrices are updated as

follows:

N =N — € sgn(VnZuiplet) (42)

where € is the learning rate. Then, we add Gaussian noise to
strengthen N as well.

Skeleton Mask refers to scenarios where parts of the body are
hidden. We mask a specific area such as the hands or legs:

Xmask = XOM+d o (1 — M), (43)

where M represents the mask. Because the partial padding of 0
after masking may cause the generated data to be outside the dis-
tribution resulting in anomalous output features, we experiment
with different padding values d including 0, Gaussian noise, and
sequences x’ sampled randomly within the sample distribution.

e Actionlet-Dependent Combination: We apply data augmen-
tation of different intensity to actionlet and non-actionlet re-
gions, and combine them to obtain the final augmented data. It
is formalized as:

Xtrans — Atv © Xaet + (]- - Atv) © Xnon (44)

where X, 1S the transformed skeleton sequence. First, we
employ actionlet transformations 7, to obtain X, and Xuop.
Then, we utilize non-actionlet transformations 7,on for Xpon.
A, represents the actionlet. We reduce x through enhanced
data transformation 7o, while using this actionlet-dependent
combination module to maintain large purity 1 — a.

Similarity Distillation Training (SDT): In our approach, we
employ both intra-sequence and inter-sequence similarity dis-
tillation learning to guide the model towards learning minimum
sufficient representations by maximizing the mutual information
between positive samples.

We initiate the pretraining process with two encoders: an on-
line encoder denoted as f,(-) and an offline encoder referred to as
/& (). The online one is updated by back-propagating gradients,
while the offline one is maintained as a momentum-updated
version of the online one.

For the offline stream, we feed the original data x into the
model f(-). Utilizing the unsupervised actionlet selection mod-
ule, we obtain actionlet regions denoted as A,. This process is
described in detail in Section IV-A. The actionlet regions serve
as key features for guiding the subsequent learning process, fa-
cilitating the extraction of discriminative motion patterns within
the data.
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After generating the actionlet regions Ay, with the offline
stream, we subject the data to a data transformation 7 to derive
two distinct views, namely, x, and x;,. Additionally, we employ
the motion-adaptive transformation strategy (MATS) to improve
the diversity of x,. This ensures that both views capture a wide
range of motion patterns and semantic information, facilitating
robust learning.

Subsequently, we optimize the contrastive learning process
to promote stronger coherence and more diverse movement
patterns. This is achieved through intra-sequence distillation and
inter-sequence distillation, respectively.

e Intra-Sequence Feature Extraction (Intra-SD): We utilize
two encoders, namely, an online encoder fq(-) and an offline
encoder fi(-), to extract features from the input sequences.
This yields feature representations z, = g,(f,(x4)) and z;, =
9k (fx(xx)), where g,(-) and g () serve as online and offline
projectors, respectively.

The parameters of the offline networks f(+) and g, (-) are up-
dated by leveraging the momentum of their online counterparts
fq(+) and g4(-). Specifically, the offline networks are updated
using the momentum update rule, feaf+ (1 —a)f, where
« represents a momentum coefficient.

To facilitate contrastive learning, we introduce a memory
bank denoted as U = {u’}}, to store offline features. In each
training batch, the features extracted from the offline data are
stored in the memory bank. We maintain the memory bank
using a first-in, first-out (FIFO) strategy to ensure continuous
updates, thereby enabling efficient retrieval and utilization of
historical feature representations during the contrastive learning
process.

Following recent works [49], [50], we apply similarity distil-
lation loss to optimize:

Lx1, = —Pglog qu
P, = SoftMax(sim(z,, U)/7,),

P = SoftMax(sim(zx, U) /7% ), (45)

where sim(z,, U) = [sim(z,, u/)]*,, which indicates the sim-
ilarity distribution between the representation z, and other ele-
ments from U.

o Inter-Sequence Feature Extraction (Inter-SD): In inter-
sequence feature modelling, we use the mix method to obtain
richer motion patterns. Specifically, skeleton mixing encom-
passes three distinct mixing methods tailored for skeleton data:
cut mix [61], resize mix [62], and mix up [63].

In both cut mix and resize mix methods, the skeletal joints are
initially categorized into multiple subsets based on different hu-
man body parts. We randomly select another skeleton sequence
x, and blend it with the original data x,, at the level of a specific

body part to generate the mixed data X,. The mixing mask M
is defined as the mask indicating the replaced joints in x,. In
the case of the mix-up method, we straightforwardly blend all
the joints of x, and xﬁl using a mask M to produce the mixed
data x:

iq:M(qu—i—(l—M)@x;.

(46)
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In our implementation, we randomly choose one of the three
mixing methods mentioned above and apply it to the skeleton
data. This random selection allows for flexibility, as constraining
the model to learn invariance under the transformation might be
unreasonable, given that semantic preservation is not guaranteed
when applying it.

In light of this, drawing inspiration from the use of mixed
labels in prior works [61], [62], [63], we manually construct Xy,
as the target feature to be learned. This construction is based on
the mixing mask and actionlets:

_ Zthl 21‘;/:1 M O Ay,
S Y A

Zf:l Z:}/=1 A;'u
a /
oy bfk(xk) o bfk(xk)~

Similarly, we use similarity distillation loss to align the posi-
tive and negative samples.

»CMX = _f)k log Pq,

a

)

9

Zp —

(47)

P, = SoftMax(sim(z,, U)/7,),

P, = SoftMax(sim(z, U) /73,). (48)

C. Semantic-Aware Masked Motion Modeling (SAM?)

To achieve more accurate extraction of motion information,
we propose a semantic-aware masked motion modeling method.
Our theoretical analysis reveals that contrastive learning may
lead to overfitting to shared information between views. To mit-
igate this issue, we aim to extract more non-shared task-relevant
information from x,, thereby augmenting the term I(z,, y|zx).
However, it’s important to note that we cannot leverage any
downstream task information during training, precluding direct
enhancement of I(z,,y|zy). Instead, we propose increasing
I(z4, Ayy) as an alternative strategy. This choice is motivated
by the notion that actionlets encapsulate information crucial
for downstream classification tasks, thus enhancing / (zq, Ay)
indirectly enhances the model’s capacity to extract task-relevant
representations.

Semantic-Aware Masking: To intensify the complexity of the
reconstruction task, we incorporate actionlets to mask regions
within the sequence exhibiting motion. Our approach involves
employing Gumbel sampling to select actionlets, which are then
applied as masks for the purpose of semantic-aware masking.
This strategy contributes to the difficulty of the reconstruction
task and ultimately enhances the learning process.

It is formalized as:

Xy, = X4 © Gumbel(Ay,), (49)

where Gumbel(-) is the Gumbel-Max.

Masked Motion Modeling: Subsequently, we carry out recon-
struction tasks for both the skeleton data of actionlets and the
actionlet regions. This approach emphasizes the extraction of in-
formation from motion regions, contributing to the effectiveness
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of our method.
£RC = HAtv - d(fq(*q))”%v

where d(+) is reconstruction network.

(50)

V. EXPERIMENT RESULTS
A. Datasets and Settings

* NTU RGB+D Dataset 60 (NTU 60) [23]: This dataset
consists of 56,578 videos capturing 60 different action labels.
Each body is represented with the positions of 25 joints in the
videos, covering both interactions involving pairs and individual
actions.

* NTURGB+D Dataset 120 (NTU 120) [24]: As an expansion
of NTU 60, NTU 120 is the most extensive dataset for human
action understanding. It comprises 114,480 videos with 120 dis-
tinct action categories. The dataset includes actions performed
by 106 subjects across various settings, utilizing 32 different
recording setups.

e PKU Multi-Modality Dataset (PKUMMD) [25]: This
dataset focuses on multi-modality 3D understanding of human
actions. It contains 52 action categories with almost 20,000
instances. Each sample includes 25 joints. The dataset is divided
into two parts, with Part I presenting more challenging data due
to increased view variation, leading to additional skeleton noise.

To optimize our network, we utilize the Adam optimizer [72].
The training process is performed on a single NVIDIA TitanX
GPU with a batch size set to 128, and the network is trained
for 300 epochs. During training, all skeleton sequences are
temporally down-sampled to 50 frames to facilitate network
training. The encoder f () is constructed based on ST-GCN [73],
with hidden channels set to a size of 16, which is a quarter of the
original model’s size. The projection heads for both contrastive
learning and auxiliary tasks consist of multilayer perceptrons,
projecting features from 256 dimensions to 128 dimensions.
We set the temperature parameter 7, to 0.1 and 7 to 0.04
to control the sensitivity of the contrastive loss function. For
evaluation purposes, we utilize a fully connected layer ¢(-),
enabling effective assessment of the model’s performance on
downstream tasks.

B. Evaluation and Comparison

For a thorough evaluation, we compare our method with other
approaches in diverse settings.

1) Linear Evaluation: In the linear evaluation protocol, we
employ a fixed encoder f(-) to process the extracted features,
and a linear classifier ¢(-) is used for action classification. The
evaluation metric employed is the accuracy of action recogni-
tion. Notably, the encoder f(-) remains constant throughout the
evaluation.

Compared to other approaches outlined in Tables I, III,
and IV, our method demonstrates superiority on these datasets.
It is worth noting that the transformation strategies utilized by
3s-CrosSCLR [70] and 3s-AimCLR [16] for the contrastive
training are uniform across spatial-temporal regions, leading
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TABLE I
COMPARISON OF ACTION RECOGNITION RESULTS ACHIEVED WITH UNSUPERVISED LEARNING APPROACHES ON THE NTU DATASET

Models | Stream | NTU 60 xview | NTU 60 xsub | NTU 120 xset | NTU 120 xsub
AimCLR [16] joint 79.7 74.3 63.4 63.4
ActCLR [26] joint 86.7 80.9 70.5 69.0
ActCLR+ joint 88.2 82.3 73.2 70.9
AimCLR [16] motion 70.6 66.8 54.4 57.3
ActCLR [26] motion 84.4 78.6 67.8 68.3
ActCLR+ motion 85.8 79.9 71.2 69.4
AimCLR [16] bone 77.0 73.2 63.4 62.9
ActCLR [26] bone 85.0 80.1 68.2 67.8
ActCLR+ bone 87.2 82.3 73.1 72.4
3s-AimCLR [16] joint+motion+bone 83.8 78.9 68.8 68.2
3s-ActCLR [26] joint+motion+bone 88.8 84.3 75.7 74.3
3s-ActCLR+ joint+motion+bone 90.7 85.7 78.7 76.7
TABLE II
COMPARATIVE ANALYSIS OF ACTION RECOGNITION PERFORMANCE BETWEEN THE PROPOSED METHOD AND OTHER SUPERVISED LEARNING APPROACHES ON THE
NTU DATASET
Models | Params | NTU 60 xview | NTU 60 xsub | NTU 120 xset | NTU 120 xsub
Single-stream:
CPM [49] 0.84M 91.1 84.8 78.9 78.4
RVTCLR+ [63] 0.84M 91.3 84.4 78.4 77.2
ActCLR [26] 0.84M 91.2 85.8 80.3 79.4
ActCLR+ 0.84M 92.0 86.1 80.5 80.0
Three-stream:
3s-SkeleMixCLR [64] | 2.55M 93.9 87.8 81.2 81.6
3s-RVTCLR+ [63] 2.55M 93.9 87.5 83.4 82.0
3s-ActCLR [26] 2.52M 93.9 88.2 84.6 82.1
3s-ActCLR+ 2.52M 94.2 89.0 84.8 82.2

to interference with motion information. Conversely, our ap-
proach adopts a motion-adaptive data transformation strategy.
Consequently, our method extracts features that retain more
robust action-related information, making them better suited for
downstream tasks.

2) Supervised Finetuning: In our approach, we adopt a two-
step process: initially, the encoder f(-) is pretrained following
the self-supervised learning framework, and subsequently, the
entire network is fine-tuned. Both the encoder f(+) and classifier
¢(+) are trained with the complete training set.

Table II showcases the performance of action recognition
on the NTU datasets, demonstrating that our method extracts
the requisite information for action understanding, leading to
enhanced action recognition accuracy. Particularly noteworthy
is our model’s superior performance in comparison to state-of-
the-art supervised learning methods.

3) Transfer Learning: In the transfer learning scenario, we ex-
plore the generalization ability of our model by employing self-
supervised task pretraining on the source data. Subsequently,
we assess the model’s performance on the target dataset using
the linear evaluation mechanism, where the parameters of the
encoder f(-) remain fixed.

Our method exhibits superior performance, as illustrated in
Table V. By leveraging Motion-Adaptive Transformation Strate-
gies (MATS) to eliminate irrelevant information and preserve

downstream task-relevant data, our encoder f(-) demonstrates
stronger generalization capabilities. The use of MATS con-
tributes to the enhanced performance observed in the transfer
learning evaluation.

4) KNN Evaluation: In the K-Nearest Neighbors (KNN)
evaluation setup, where the fixed encoder f,(-) extracts features
without any trainable parameters, our model showcases supe-
riority in the accuracy of action recognition on the presented
datasets. Table VI highlights the effectiveness of our mothod
compared to others in this evaluation.

5) Semi-Supervised Learning: Table VII showcases the accu-
racy of action recognition results on the NTU datasets. Remark-
ably, our method surpasses state-of-the-art supervised learning
approaches, affirming its efficacy in enhancing action recogni-
tion by extracting essential information for downstream tasks.
Particularly noteworthy is the substantial improvement over
SkeleMixCLR, with an impressive increase of 16.9% on xview
and 14.6% on xsub for the NTU 60 dataset, achieved with merely
1% of training samples. This signifies aremarkable advancement
in the semi-supervised setting.

6) FLOPS and Params Results: We have conducted an es-
timation of the space and computational complexities of the
proposed model, as detailed in Table VIII. Notably, the reported
results pertain to the pretraining stage with a batch size of 128.
Recent work [54], [74] has increasingly adopted architectures
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TABLE IIT TABLE V
COMPARING ACTION RECOGNITION PERFORMANCE WITH VARIOUS COMPARISON OF TRANSFER LEARNING PERFORMANCE WHERE MODELS ARE
UNSUPERVISED LEARNING APPROACHES ON THE NTU 60 DATASET PRETRAINED ON THE NTU 60 DATASET AND THEN EVALUATED ON THE
PKUMMD DATASET USING A LINEAR EVALUATION PROTOCOL
Models | Architecture | xview | xsub
- Models | PKUIxview | PKU II xview
Single-stream: -
GL-Transformer [14] | Transformer 83.8 76.3 3s-AimCLR [16] 85.3 424
CPM [49] GCN 84.9 78.7 3s-ActCLR [26] 91.6 44.5
RVTCLR+ [63] GCN 79.1 74.7 3s-ActCLR+ 93.1 51.5
Colorization [65 DGCNN 82.6 73.2
Cﬁ/[(]))rl[zélaS]lon 1691 GRU 86.9 79 4 Models | PKUIxsub | PKU II xsub
HaLP [51] GRU 86.8 79.7 LongT GAN [10] - 44.8
DMMG [66] GCN 87.1 82.1 MS2L [11] - 458
ActCLR [26] GCN 86.7 80.9 ISC [12] - 51.1
ActCLR+ GCN 88.2 82.3 Hi-TRS [70] - 55.0
T 3s-CrosSCLR [69] - 51.3
3s-Colorization [65] DGCNN 872 | 79.1 3s-AimCLR [16] 85.6 51.6
3s-SkeleMixCLR [64] GCN 871 | 827 3s-ActCLR [26] 90.0 55.9
35-CPM [49] GCN 87.0 | 832 3s-ActCLR+ 91.6 62.1
3s-RVTCLR+ [63] GCN 84.6 79.7
SkeAttnCLR [67] GCN 86.5 82.0
PSTL [68] GCN 838 | 79.4 TABLE VI
2s-DMMG [66] GCN 893 840 COMPARISON OF ACTION RECOGNITION PERFORMANCE USING KNN
3s-ActCLR [26] GCN 88.8 843 EVALUATION, WHERE ONLY THE JOINT STREAM IS UTILIZED
3s-ActCLR+ GCN 90.7 85.7
Models | NTU 60 xview | NTU 60 xsub
TABLE IV AimCLR [16] 71.0 63.7
COMPARING ACTION RECOGNITION PERFORMANCE WITH VARIOUS SkeleMixCLR [64] 72.3 65.5
UNSUPERVISED LEARNING APPROACHES ON NTU 120 DATASET ActCLR [26] 78.0 66.6
ActCLR+ 81.6 75.9
Models | Architecture | xset | xsub
' Models | NTU 120 xset | NTU 120 xsub
Single-stream: -
CMD' [48] GRU 66.0 | 65.4 AImCLR [16] 48.9 47.3
GL-Transformer [14] | Transformer | 68.7 | 66.0 SkeleMixCLR [64] 49.3 48.3
DMMG [66] GCN 70.1 | 69.6 ActCLR+ 62.3 58.9
ActCLR [26] GCN 70.5 | 69.0
ActCLR+ GCN 73.2 | 70.9
TABLE VII
Three-stream: COMPARISON OF ACTION RECOGNITION RESULTS USING SEMI-SUPERVISED
3s-CrosSCLR [69] GCN 66.7 | 679 LEARNING APPROACHES ON THE NTU 60 DATASET
3s-AimCLR [16] GCN 68.8 | 68.2
3S-CMDT [48] GRU 69.6 69.1 Models ‘ XView ‘ xsub
3s-SkeleMixCLR [64] GCN 70.7 | 70.5 1%
3s-CPM [49] GCN 74.0 | 73.0 &
3s-RVTCLR+ [63] GCN 689 | 68.0 3s-CrosSCLR [69] 500 | 5L1
25-DMMG [66] GCN 724 | 727 gs-gﬁnfchzg ([:1511{ 4] g‘ég gég
3s-Colorization [65 DGCNN 70.8 | 69.2 S-oxelelvlX : :
e ACOLR [‘;g]‘ [65] CON e 3s-C-F Masked Colorization [65] | 53.1 | 523
3s-ActCLR+ GCN 78.7 | 76.7 3s-ActCLR [26] 65.6 | 64.8
3s-ActCLR+ 73.1 70.5
" indicates that results reproduced on our settings of feature dimension size.
10%:
3s-CrosSCLR [69] 77.8 74.4
like Transformers, which have demonstrated strong performance 3s-AimCLR [16] 816 | 782
across various tasks due to their powerful self-attention mecha- gs'gkle:lil/}/h’;(chC [614] ization [65] S%; %g
. . . . s-C-F Masked Colorization . .
nisms and ab'lhty to model long-range fiep.endenmes gffectlvely. 35-ActCLR [26] 85.8 817
However, this comes at the cost of significantly higher com- 3s-ActCLR+ 86.0 82.2

putational demands and an increased number of parameters.
Such resource-intensive models can pose limitations in practical

applications. . .

In contrast, our approach is designed to be much more C. Analysis of Actionlet
lightweight. Moreover, we emphasize that our work is primarily Quantification of Actionlet: To provide a more explicit un-
focused on theoretical analysis, which can be applied to various  derstanding, we delve into the specific quantitative metrics to
network structures beyond our specific implementation. evaluate the quality of actionlets. These metrics include:
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FLOPS AND PARAMS RESULTS OF DIFFERENT MODELS

TABLE VIII
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185

80 100 120

Models | Params | FLOPs| | xview  xsub
GL-Transformer [14] 214M 59.35G 83.8 76.3
3s-CMD [48] 99M 17.32G 90.9 84.1
MAMP [53] 8.7M 5.46G 89.1 84.9
3s-UmUR [73] 64M 5.22G 91.4 84.4
S-JEPA [55] 15M 14.92G 89.8 85.3
Ours | 25M 3.08G | 907 85.7
100 185
95 180
175
90
R 170
165
80
160
7 — Npos 1155
—— Nieg
70 150
0 10 20 30 40 50 60
Epoch
Fig. 8. Curve of the number of correct actionets and the number of incorrect

actionlets with epoch.

e Correct Actionlets Count: This metric quantifies the number
of actionlets that are accurately identified.

N T V

Npos = ZZZAL; N Aiv?

i=1 t=1v=1

61V

where A, is the actionlets obtained through the supervisor
method. We utilize it as the ground truth reference.

e Incorrect Actionlets Count: This metric measures the num-
ber of actionlets that are wrongly identified.

N T V

Nneg = ZZZA%’UH ~ Aiv’

i=1 t=1v=1

(52)

where ~ represents the complement of a set.

e Percentage of Correct Actionlets: This metric expresses the
proportion of correctly identified actionlets relative to the total
number of actionlets.

N, pos

R= P
Npos + Nneg

(53)

With these specific metrics, we gain a comprehensive and
precise insight into the contrastive learning process.

1) Dynamic Processes of Actionlet: By closely examining
the alterations in actionlets throughout the training process and
across various data transformation intensities, we discern several
notable findings.

Throughout the training process of contrastive learning, the
network goes through distinct phases, as shown in Fig. 8.
Initially, it extensively explores regions that display potential
motion. As training progresses, it consistently removes areas that
prove to be irrelevant to the task. By constructing information
bottlenecks through data transformations, the network filters out
task-irrelevant incorrect actionlets, and obtains the maximum

Fig. 9. Number of correct actionlets and number of incorrect actionlets with
data transformation.
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Fig. 10.  The number of actionlets and the proportion of correct actionlets vary
with data transformation.
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Fig. 11.  The distribution of local features. Some of these features are heavily
clustered in some of the clustering centres.

Count
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Fig. 12.  The distribution of local features in the actionlet region. The features
are more uniformly distributed across the clustering centres.

proportion of correct actionlets with minimal sufficient trans-
formation, as shown in Figs. 9 and 10.

2) Analysis of Actionlet and Non-Actionlet Semantic Decou-
pling: In Fig. 13, we evaluate our model’s performance by
extracting information exclusively from the actionlet region or
non-actionlet region and reporting action recognition perfor-
mance. The accuracy in the actionlet region is always greater
than in the non-actionlet region. This indicates that the actionlet
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Fig. 13.  Action recognition accuracy of actionlet regions and non-actionlet
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Fig. 14.  Heat map of skeleton joints and action labels. [20, 3, 2, 1, 0] are trunk

TABLE IX

ANALYSIS OF MODULE COMBINATIONS ON NTU 60 XVIEW DATASET WITH

THE JOINT STREAM

Module ‘ KNN ‘ Linear
Intra-SD | Inter-SD | SAM? | |
v 78.5 87.0
v v 81.4 87.7
v v 80.3 87.1
v v v 81.8 88.2

“SD” means similarity distillation.

TABLE X

ANALYSIS OF MOTION-ADAPTIVE DATA TRANSFORMATION ON NTU 60 XVIEW
DATASET WITH THE JOINT STREAM

Transformation |  Region | KNN | Linear
Adversarial Noise uzf/{)iccttii%?heett ‘ 2411782 ‘ ggg
Skeleton Mask ‘ ;)u//oiccttiioorrlllleett ‘ %g ‘ g%
Masking Strategy ‘ u?j;//l\s/[ﬁl\l\/f ‘ Z?g ‘ g;g

indexes, (8,9, 10, 11, 23, 24] are left hand indexes, [4, 5, 6,7, 21, 22] are right
hand indexes, [16, 17, 18, 19] are left leg indexes and [12, 13, 14, 15] are right
leg indexes.

Frame
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Fig. 15. Heat map of skeleton frames and action labels. We perform 4-fold
downsampling in the temporal domain.

regions extracted by our method contain more recognition-
related information. Whereas the accuracy of non-actionlet re-
gions first rises and then falls, we believe this is because actionlet
mining keeps getting more accurate as the training progresses.

3) Analysis of Frequency of Actionlet and Local Feature: We
counted the frequency of local features and found an unbalanced
distribution in Fig. 11. Most of the features are frequently
occurring features that are closer to the average feature and less
divisible because of their extensive interconnections. The local
features of actionlet are those that occur relatively infrequently,
while filtering out frequently occurring features that cannot be
helpful for classification, as shown in Fig. 12.

4) Analysis of Actionlet and Action Label: To analyze the
relationship between actionlets and action labels, we conducted
an investigation into the actionlet regions selected for each
category, separately in the spatial and temporal dimensions, as
illustrated in Figs. 14 and 15. In the spatial dimension, it becomes

evident that the importance of different joints varies. Notably,
hand movements are frequently selected, suggesting that a ma-
jority of actions involve the participation of the hands. In the
temporal dimension, actions tend to occur predominantly in the
middle of the sequence. This suggests that multiple actionlet
regions may exist for the same action label, each representing
different facets or modes of that action.

D. Ablation Study

Next, we provide more detailed analyses of our proposed
approach by conducting extensive ablation experiments.

1) Analysis of Module Combination: We explore the perfor-
mance of different combinations of modules and observe that
each module contributes to a certain degree of improvement.
Optimal performance is achieved when all three modules are
combined. As shown in Table IX, each module improves per-
formance. Intra-SD (intra-data similarity distillation) enhances
feature learning within data, Inter-SD (inter-data similarity dis-
tillation) enriches knowledge exchange across data, and SAM?
(fine-grained reconstruction from a joint perspective) further
refines feature reconstruction.

2) Analysis of Motion-Adaptive Data Transformation: Data
transformation plays a crucial role in contrastive learning, and
thus we conducted experiments to evaluate the impact of motion-
adaptive data transformations on action recognition accuracy
under various scenarios.

As shown in Table X, motion-adaptive transformations con-
sistently outperform full-region transformations (involving the
entire skeleton data) across different noise settings. This ob-
servation emphasizes the robustness of our design to variations
in data transformations. Compared with motion-aware masking
(MAM) strategy [54], SAM strategy slightly outperforms MAM
in terms of accuracy, particularly in actions involving complex
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TABLE XI
ANALYSIS OF DATA TRANSFORMATION COMBINATIONS ON NTU 60 XVIEW
DATASET
Module ‘ KNN ‘ Linear

Tact | Tnon | Adversarial Noise | Skeleton Mask | |
\ \ \ | 675 | 799
v 73.6 83.2
v v 79.6 86.4
v v v 80.1 86.9
v v v 80.8 87.7
v v v v 81.8 88.2

Tact is actionlet transformations. Tnon is non-actionlet transformations, excluding Adversarial
Noise and Skeleton Mask.

semantic relationships between joints. This suggests that SAM
is more effective in understanding the semantic context.

To further understand the impact of different data trans-
formation combinations on the effect of contrastive learning,
we assessed the accuracy of action recognition under various
scenarios, as presented in Table XI. The results highlight that
enhancing the consistency of the feature space through multiple
data transformations leads to improved performance in down-
stream tasks.

VI. CONCLUSION

In this research, we propose an innovative actionlet-dependent
contrastive learning method. Utilizing actionlets, we devise
motion-adaptive data transformations to efficiently segregate
action and non-action regions. The proposed modules enable
focused attention on motion information within the sequence
while reducing disturbances from static regions for represntation
extraction. This approach preserves action movement within
actionlet while incorporating richer motion patterns, resulting
in more compact and informative learned features. Additionally,
the similarity mining loss further regulates the representation
space.
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